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ABSTRACT

In a drag-free satellite, a proof mass is enclosed in the cavity
of a spinning satellite. Control jets on the satellite keep the proof
mass from touching the cavity wall. Mass attraction of the satellite
on the proof mass is the largest force perturbing the proof mass from
a purely planetary gravitational orbit.

This thesis analyzes an integral controller designed to reduce in-
track trajectory error caused by mass attraction. Root locus obtained
by the frequency symmetry method was used along with analog and digital
computer simulations. Linear and on-off controls with square and octag-
onal deadspace were compared.

The external disturbance forces on the satellite were studied with
respect to the mass attraction force that results.

An error analysis was made of the integral controller mechanization.
It was shown that the in-track trajectory error caused by mass attraction
is reduced from 150 km to 72 m (after 1 year) with the use of integral
control.

Trapping, a stable equilibrium position of the proof mass which re-
quires a constant expenditure of fuel, was encountered during the analy-
sis of the integral control. An analysis is made of the trapping suscep-

tibility of a system versus the control gain.
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Chapter 1

INTRODUCTION

A. Problem Statement

The drag-free satellite studied in this thesis consists of a proof
mass inside a sealed cavity of a spinning satellite. Control jets enable
the satellite to follow the trajectory of the proof mass and yet never
touch it. In this manner, the proof mass (and therefore the satellite)
is made to follow an orbit which is almost solely under the influence
of planetary gravity.

Mass attraction force of the satellite on the proof mass is the
largest force perturbing this orbit; and for some drag-free satellite
applications, this perturbation cannot be tolerated.

Since the satellite will be spinning, mass attraction force at the
control sensor null point will not produce long term trajectory error.
However, due to the inability to precisely locate every mass element in
the satellite, mass attraction gradients will not be zero. This implies
that forces which disturb the satellite and displace the proof mass rela-
tive to the satellite may result in mass attraction force on the proof
mass., This force, due to the gradient in the mass attraction field of
the satellite, will systematically act in the direction of the distur-
bance. Hence it is not averaged by the spin and can have a significant

effect on the orbit.

B. Previous Results

In 1964, Lange [2] studied the linear control of translational mo-
tions of a spinning vehicle, and he also studied the external disturbance
forces on a satellite.

In 1970, Powell [1] designed an on-off translational controller with
deadspace for a spinning satellite. He observed the trapping phenomenon
and developed a digital program to find trapped solutions and determine

the trapping susceptibility of a system.




C. New Results

The main purpose of this thesis is to study the integral controller

which has been proposed to reduce in-track trajectory errors caused by

mass attraction force.

To this end, the thesis contributes the following results:

1)

2)

3)

4)

(5)

Disturbance forces on the satellite and their resulting mass
attraction forces on the proof mass were calculated.

The integral controller (linear and with deadspace) stability

was analyzed through the use of frequency symmetry, root locus
method.

The use of the integral controller was shown to reduce in-track
trajectory error caused by mass attraction from 150 km to 72 m
(after 1 year).

Limit cycle behavior of the proof mass, at the frequencies de-
termined by practical impulse sizes (5 X 1073 > AV > 5 x 1074
mm/sec), was shown to cause no significant in-track trajectory
error due to mass attraction.

Trapping susceptibility (trapping is a stable equilibrium posi-
tion of the proof mass which requires constant fuel expenditure)
was shown to be almost constant for Kp/wg > 1, the range of
Kp/wg which will be used in practice. For Kp/wg <1, it was
shown that this susceptibility reduces very rapidly.




Chapter 11

DESCRIPTION OF SATELLITE WITH LINEAR NON-INTEGRAL CONTROL
The basic drag-free satellite structure is described. Equations

of motion for the spinning satellite is given, and a linear non-integral

controller is described.

A. Satellite Description

The drag-free satellite (Fig. 1) consists of a proof mass enclosed
in the sealed cavity of a spinning satellite. The satellite has control
jets which keep the proof mass away from the cavity wall. The proof mass
is therefore free from the external disturbing forces such as atmospheric
drag, solar radiation, etc., and the largest force that perturbs the proof

mass from a purely planetary gravitational orbit is mass attraction between

the satellite and the proof mass.

We
ORIGIN OF 1
SATELLITE FIXED
REFERENCE
FRAME x,y,2

PROOF
MASS

4
3\

CONTROL
SATELLITE JETS
CENTER -OF-
MASS

Fig. 1. DRAG~FREE SATELLITE SCHEMATIC.




The satellite contains a sensor (capacitive or optical) which
measures the proof mass position relative to the satellite. Using
this information, the relative proof mass velocity is estimated
(this is discussed in detail by Powell [1]). The position and ve-
locity information are then fed into the controller to generate a

command for a control force.

B. Equations of Motion

Assum? that the satellite center-of-mass position is constant
and that 3; = 0. Neglect gravitational forces on the satellite and
all forces on the proof mass (mass attraction force on the proof mass
will be studied as a correction to these equations). With these as-

sumptions, the equations of motion are given by Powell in Reference 1

as,
EIN — = —> — - 1 - = = — -
o @ © = — © o
rb+2s><rb+s><(s><rb) mS(Fi+Fb+Fc)+sX(sxre)
2.1)
where

Fl = disturbing forces fixed to the rotating satellite

F; = contrnl force on the satellite

f; = all other nongravitational perturbing forces on the satellite
5; = satellite spin rate

ms = mass of satellite

?L,?L are as defined in Fig. 1.

With the choice of reference frame as shown in Fig. 1, the equations of

motion becomes,




.. 2 2
X - wx -20y =f, +f +f -uwx (2.2a)

b s b s"b ix bx cX s e
- w + 2w X, = - .
y syb be iy + fby * fcy wsye (2.2b)
zb = fiz + sz + fcz (2.2¢c)

The z-axis 1/(52) plant, uncoupled from the other two equations,

is well understood and will henceforth be disregarded.

C. Linear Non-Integral Control

The linear control law used by Powell [1] is,

2]
]

ox —Kp[xb + 7(xb—wsyb)] (2.3a)

fcy —Kp[yb + 7(yb+wsxb)] (2.3b)

where
A . . 2
K = position gain (1/sec”)

A velocity gain
" position gain

(sec)

Substituting the control forces into Eqs. (2.2a) and (2.2b) gives,

[ % ] B 0 0 1 0-1 [ x|
* *p
; 0 0 1
Yy, 0 b
u ) Wk yw K -7K 2w u

b s p s Dp o] s b
v w K wz—K -2W -7K \Y
b 4 S p s p s p b
L L Dl L P
p— 0 -
0
2
e« £ ux
ix X s e (2.4)
- wz
Liy + by sye_




Chapter III

DISTURBING FORCES

The only significant disturbing force on the proof mass, mass attrac-
tion force, is given in a Taylor series expansion. Disturbance forces
acting on the satellite which are constant in the satellite fixed refer-
ence frame are shown to cause no non-zero average mass attraction force.
An order of magnitude is calculated for the largest disturbing force on

the satellite which does cause a non-zero average mass attraction force.

A. Mass Attraction Force on the Proof Mass

1. Mass Attraction Force Model

In the reference frame fixed to the satellite (Fig. 1), the
specific force on the proof mass caused by mass attraction of the satel-

lite can be represented by a Taylor series expanded about the origin,

of of 3%¢
£ - f . ex %+ ex + l ex 2
ex ex 9% b ) b 2 3 2 b
o X
2 2 3
9 fex x + 1 0 fex 2 1 fex 3
t 5 Dxdy blb T2 32 b & 33 b
y
3 3 53
1 3 fex 0 fex 2 1 fex 3

+ e (3.1a)
2
of afe L
s v —~2¥ sl &L, (3ap)
fey feyO X xb * y b 2 6x2 b
where £ , £ , Of /ox, ... are all evaluated at the origin.
ex ey, ex




For error analysis, Powell [1] showed that significant trajec-

tory error is caused only by a non-zero averagein—trackforce*, T h
e

(in-track direction is defined in Fig. 2.),

T +T
~ 1 f o
= = dt ~ 1 .
feh T feh T day (3.22)
T
o
f =c f - sf (3.2b)
eh ex ey
where
c = cos (wht)
A
= w t
s = sin ( h )
W é W =W
h s o
A . ~ 13
w, = orbital rate ¥ 10 = rad/sec
IN -TRACK ORBITAL REFERENCE
DIRECTION w FRAME ROTATING
T~ s WITH ORBIT, AT
b ANGULAR RATE wj,
wo \
Fig. 2. ORBITAL REFERENCE FRAME.
Combining Egqs. (3.la,b) and Eq. (3.2b), we see that fexo and
fey are modulated by cos (wht) and sin (wht) respectively. wh will
o
be chosen such that 2ﬂ/wh << 1 day, so fexo and feyo do not contrib-
ute to f .. Due to the inability to precisely locate each mass element,

eh
there will be non-zero gradients,

* .
This conclusion is arrived at by a frequency domain analysis of the
in-track trajectory error equation, Eq. (5.2).




ex, ex,y . -10
where . L, 3 I =~ 10 g/mm ,

and Fleming [3] has shown that

n+l an

° fexyr1 2 fexy
=715 .

5xn+1 1 an

2. Mass Attraction Force Due to Body-Fixed Disturbance Forces
on, or Center of Mass Offset of the Satellite

A force on the satellite which is constant in the satellite
fixed reference frame (Fig. 1), results in constant "steady-state" errors
i and
in xb yb
applied force or a center of mass offset (non-zero xe and/or ye).

(Fig. 3). This force can be due either to an externally

= = = =0 i . . "
Setting Xy Yy, u, vb in Eq. (2.4), we get the "steady

"
state errors xbss and ybss’

[ o 11 o n
X w -K yw K wx -f
b s p s D s e bx
ss
y - - -
b
bSS L s p s p‘ i s e yJ
or
w =K -yw K
s p
xb w K oK w xe_fbx
ss B fp p
= (3.3b)
g 2 w T
b (w -K )2-r72w2K ] Yo 'by
ss L\ s P




=
>
D

)

)

|

yp{mm)

xp (mm)
9)
>
D
)
)

150 300
t(sec)

Fig. 3. ANALOG SIMULATION OF EQ. (2.4) TO SHOW EFFECT OF
BODY-FIXED FORCES.

with
fix = fiy =0
fbx = fby = 10_2 mm/sec2
xe = ye =0
Kp = 10_2 1/se02

ms =0.1 rad/sec

y = 100 sec

From Eq. (3.3Db),

10




b
ss
= mm
0.
b 1
ss
With constant Xy and Vp Eq. (3.2b) becomes
ss ss
feh = ¢ X constant - s X constant (3.4)
and Eq. (3.2a) becomes,
t=T +T
~ 1 o
feh = G;T {s %X constant + ¢ X constant} (3.5)
t=T
o

with T =

1 day ;eh = 0. Therefore, satellite fixed forces and center

of mass offsets will not contribute long term in-track trajectory errors.

3.

Mass Attraction Force Due to Other Disturbance
Forces on the Satellite

Lange [2] showed that the only significant perturbing force,

which is not constant in the satellite fixed frame, is constant atmospheric

drag.

(Fig. 2),
Fig.

v, (Fig

Atmospheric drag is constant in the orbital reference frame
and this suggests sinusoidal "steady-state" errors in x_ and

b
4). Since

X

= cos (w t) (3.6a)
ix s

¥, |
£, = - sin (& t) (3.6D)

1 m
y ]

11




0;_/\/\/\/\/\/\/\/\/\/\
VAAVAAVAAVAAVAAVAAVAA

xp (mm)

|

SAWAWAWAWAWAWAWAWAWAN
VAVAVAVAVAVAVAVAVAVE

200 400
t (sec)

ﬁx(nnn/secz)

Fig. 4. ANALOG SIMULATION OF EQ. (2.4) TO SHOW SYNCHRONOUS
EFFECT OF ATMOSPHERIC DRAG IN BODY AXES, WITH

-3 2
f. =10 cos (w t) mm/sec
1X S
- 2
f. = -10 3 sin (w t) mm/sec
iy s
= =0
fbx fby

-3 2
K =10 1/sec

ws =0.1 rad/sec

¥y = 100 sec
where IFiI = magnitude of the disturbance force. We get from Eq. (2.4),
¥, | £,
X = — cos (W t) = . (3.7a)
b m K s K
ss S p p

12




% - sin (W t) = —X (3.7b)
m S

Combining Eqs. (3.7a,b) and Eq. (3.2b),

1 afex afex
= b if - -
fon = “Tex " 5%y twx [\ TSy

of of o
2 ex 2 ey A 1]
+e\—5 /] *+s BN + terms containing (s c¢“)

where i+ j > 2 , (3.8)
and
of o)
f =L ssf + cf + lFil s2 X _ fey
eh  wT ex ey 2m K ox dy
s o o s p
1 afex dfey
= .0 - ini
+ (2 cs + 5t> 3y 3x + terms containing
t=T +T
. o
1] . s
(s’c’) where i+ j>1
t=T
o
T £ 0 for T > 1 day. (3.9)

eh

Therefore, atmospheric drag will cause long term in-track trajectory

error.

B. Atmospheric Drag Force on the Satellite

In order to study the control to reduce trajectory errors, we need

to know the magnitude of the atmospheric drag.

13




-1 2 c_ A 3.10)
Drag 2 ® Vs ©p % .
where
P = atmospheric density
Vb = orbit speed
cD = drag coefficient
As = satellite reference area.

Considering a typical satellite with,

= 2
°p
A =3 X 105 mm2
s
H = 400 km
-18
P =6.5 X110 gm/mm3
and
= K 7
Vo = BT m =0.77 X 10 mm/sec
E
where
2 2
M =GM = 3.98 X 10 3 mm3/sec
9
RE = radius of earth = 6.38 X 10  mm
F
-3 2
= 2F28 _ 1 .94 x 107> mm/sec
Drag m
s
C. Conclusion

Because of inability to pinpoint every mass element of the satellite,

there will be mass attraction force gradients. These gradients, combined

14




-3 2 -7
with a constant atmospheric drag force of 10 mm/sec (10 g), will

result in long term in-track trajectory errors of 150 km per year.

15







Chapter 1V

INTEGRAL CONTROLLER WITH SQUARE DEADSPACE

Integral controller with square deadspace is described. It is ana-
lyzed both by use of the root locus method and computer simulations.
Since in actual design, the satellite will have both an on-off controller
and on octagonal or circular deadspace, both these features are added on
and simulated on computer. This is to show that the basic analysis done

on the simpler square deadspace system is still valid.

A, Description of Integral Control with Square Deadspace

Powell [1] suggested an integral controller to reduce the trajec-
tory error caused by mass attraction. A square deadspace is incorporated
in the controller to reduce sensitivity to chatter about the sensor null

point and to noise when an on-off controller is used.

1. Control Equations

In order to reduce errors caused by mass attraction force, we
must limit the integral given by Eq. (3.2a).

We can do this by introducing a control center bias,

X C S -1 I
u hc
= -K (4.1)
¢ I
Yu S ¢ ve
where
Ihc t xbi
= j dt (4.2)
: 0
Ivc ybi
and

17




*bi
Yoi
K =
c
The control law then becomes,
f =-K Ix -x +
cX P b u
f =-K ly -y +
cy r yb yu
2, Square Deadspace

The integral control law

CX

cy

where e;, e; are related to e ,

X
5, and
e' = x - X
b u
| R -
e yb yu

B. Effect of Integral Control

To analyze the integral contr

computer simulations were used.

b
(4.3a}
s c Xy
integral control gain
X~ W .3b
7(xb Syb)] (4.3b)
7y, + wsxb)] (4.3¢)
with square deadspace becomes,
-K e (4.42a)
p X
-K e (4.4b)
PYy

ey by the relationship shown in Fig.

+7(xb - wsyb) (4.5a)

v W
+.7(yb + be) (4.5b)

oller, both the root locus method and

18




p ey.ey

Fig. 5. DEADBAND DEFINITION FOR EACH AXIS FOR SQUARE
DEADSPACE.

1. Root Locus Analysis

From Chapter IV-A-1,

x ==K [eI. + sI ]
u c hc ve
t t
= -K_ {¢ Jﬁ [cxb—syb] dt + s }F [sxb+cyb] dt (4.6a)
0 0
Yy = -Kc[-sIhc + CIVC]
t t
= -K, (-8 J; [cxb-syb] dt + ¢ fo [sxb+cyb] dt (4.6b)

The characteristic equation is obtained by the frequency
symmetry method. Substitute Eqs. (4.6a,b) into Egs. (4.5a,b) respec-
tively,

19




t t
e, = X o+ Kc c J; [cxb-syb] dt + s J; [sxb+cyb] dt

+ 7(ib - wy) (4.72)

t t
=y +K /- -sy. ) dt + ]
ey yb o SA [cxb syb c f [sxb+cyb dt}
0
+ 7(yb + wsxb) (4.7b)

Substitute Eqs. (4.7a,b) into Egs. (2.2a,b) respectively, with f =

bx
= = = O
fby e = Ve !
£ - 0’% -2y =f -Ke (4.8a)
b s b Yo T tix p x )
5o- w2 + 20 x =f, =-Ke (4.8Db)
b s7b sb iy Py ’

Linear control with no deadspace is used here to make it pos-
sible to draw a root locus plot. In the next section, it will be shown
that these results, obtained without a deadspace, are equally valid for
control with deadspace.

Add j times Eq. (4.8b) to Eq. (4.8a) (j = ~-1),
G, + 350 -0Px + 3y + 250 Gk + 39.)
b "IV THgEp * IV IHgEp T IYy,

t
= - j - -sy. ]
(£, + iny) Kp(xb + 3yy) Kch c JE [cxb sy, 1 dt
t
+ g j(; [sxb + cyb] dt y + j —s[cxb-syb] dt

t
+c fo [sxb + cyb] dt, - Kp7[(xb+‘]yb) + st(xb+be)]
(4.9)
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Let =z

up

xb + be in Eq. (4.7)

t
7 - W2z +2jwZz=-K2z~-KK i
z + ‘js Kp pc{cj(; (c + js) zdt

t
+ s Jﬂ (s=jc) zdt, - Kz + jw z]
0 P S

(4.10)
Using the trigometric identities,

juw t -jw t
1<Jh Jh)
Cc = 5 e + e .

and

Eq. (4.10) becomes,

Z

. 2
w k - - K - jwKk
+ (23 s + p7)z <ws p J s SO z

-jw t t Ju t
+ K K e h _/- e b z dt
P c 0

(4.11)
Taking the Laplace transform of Eq.

(4.11) and noting that,
1
- - jW
S 72(S -] h)
and
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-jw t t jwt
£qe h J- e by dt = —Zﬁﬁlr—
0 S

we get,

2 2 .
ST + (2jw +K 7)S - <w -K -jw K 7) + 7—9—3—— Z(s) =0 (4.12)
s p s p s p S + jw

Writing the characteristic equation in Evans root locus form,

K K
5 SR 5 == -1 (4.13)

j W i W K - (w™ - - W
S +J h)[s + (23w + p7)s ( . Kp J syxp)]

The pole locations, are

-(2jw_+X 7)i\ﬁ2.w & % 4 a (wz-K -Jw 7K )
S _p Js b S p_S P

S = .14
1,2 2 (4.14a)
S = -jW 4.14b
s = —Jwy ( )
Note that poles S1 o in Fig. 6 are poles of the original system without
1
integral control, and pole S3 is the integral controller pole.

In general, a root locus plot for the integral controller can
be obtained from the root locus plot of the original non-integral con-
trol system (Fig. 7). The characteristic equation for the non-integral

system in Evans root locus form is,

=

an \ 3
(y Sl J7ws)

w ool
kel

5 = -1 (4.15)
s' 4+ 2js' -1

where g' =
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| jw
+0.3
/KC:ZO
0.2
/———Kc=|.5
nk /Tm
| | I
-0.2 0.1 Ol 0.2
o
Fig. 6a. ROOT LOCUS PLOT VS Kc WITH
ws = 0.1 rad/sec
Yy = 20 sec
K = 10-2 1/sec2
p
jw
wg=0.1 rad/ sec
y =20 sec , ~£5\
K,=0.1 I/sec
p K.B2.15
KC=OO76 Kc: 1.66

+

Fig. 6b. ROOT LOCUS VS Kc.
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W
T+ 0.2
——— =0 0.1
1 1 | -
-0.3 -0.2 -0
o
a. Root locus vs (yws = 2)
\jw
£:07
+0.02
Kp=OOO| \\
- - I&O(N
1 | ] —
-0.03 -0.02 -0.0t
c
b. Root locus vs (7ws =

(note change in scale)

Fig. 7.
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To draw the root locus plot for an integral controller system:
a. Choose a value of 7ws.
b. Pick a wvalue of Kp from the non-integral controller

plots such as given in Fig. 7. There will be two poles
associated with this Kp.

¢c. The two poles found in (b) are the same as poles S

1,2
for the integral controller system.

. = -jw .,
d Pole S3 J h

2, Computer Simulation of Integral Controller

To choose a range of acceptable Kc requires first choosing
Kp and 7ws. Kp is lower bounded by the fact that it must be large
enough to move the proof mass away from the cavity wall if it were pushed
against the wall at spinoff from the booster. This results in a crite-

rion,

or

2
K > w (4.16)

b

where rc = radius of the satellite cavity.

7ws is lower bounded (7ws > 1), by two considerations. One,
it must be high enough to provide sufficient damping. Two, it must be
high enough to avoid being in the range of high susceptibility to "trap-
ping"”, a fuel wasting limit cycle (see Chapter VI).

7ws is upper bounded (7ws < 3) by stability considerations.
As 7ws becomes larger, we see from Figs. 6 and 7 that the integral
controller root locus is pushed more into the right half plane. There-
fore, the range of stable Kc will be decreased.

Following the above guidelines, a typical set of parameters

would be,

ws = 0.1 rad/sec
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r = 3 mm

c
y = 20 sec
2
K = 0.1 1/sec
p
= 0.1
rd 0 mm

Figures 8 and 9 show the result of computer simulations of the integral
controller with square deadspace [Eqs. (4.4a,b), (4.5a,b), and (4.8a,b)
were simulated on both analog and digital computers using above valuesl.

The computer simulations were done with a square deadspace con-
troller, while the root locus analysis was done without a square dead-
space. The results show that system behavior of the square deadspace
integral controller can be predicted by the root locus plot of a con-
troller without a deadspace.

On the basis of both analyses, only the following range of Kc

should be considered for the system as described in this chapter,

-2 -
10 > Kc > 8 X 10 4 1/sec

C. On-0ff Integral Controller with Square Deadspace

For actual application, on-off control (Fig. 10) will be used in-
stead of linear control.. This section is intended to show that for the
purpose of analyzing the integral controller, linear control is a very
good approximation for on-off control.

Typical parameters for an on-off controller are,

maximum control force

H

2
fm =0.05 mm/sec

r 0.1 mm

d

>

minimum control impulse AV =0.001 mm/sec

*
The reason for this is that on-off controllers are less prone to
control-gas leaks than linear controllers.
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8a. COMPUTER PRINTOUT OF UNSTABLE SYSTEM, K TOO HIGH.
C

Al /\/\\J(\/\ ﬂ

t(sec)

8b. PLOT OF Xy OR ¥y Vs t, Kc TOO HIGH. Poles of

the original non-integral system are displaced too much.
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xp OR y, (mm)

Xxp OR yp(mm)

/ﬁ\ VAN ~
\/ VYV A 500
t (sec)
-0l
Fig. 8c. PLOT OF x  OR y_ VS t. Optimal X .
|
ol
(-\/-\ /\ /\ AN -
J VAVAYRERE
U 1(sec)
-0l

Fig. 8d. PLOT OF X /yb

enough damping.
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xm(mm)

PLOT OF Xpi
0.10 -
0.05
o) l l l 1 —]
0 100 200 300 400 500
t (sec)

Fig. 9. PLOT OF x i VS t. Xypi 1is driven to zero, which im-
plies that there is no mass attraction force.

fex 1 fey
fm"“
l.p_i_.
N - i
e/,e
— . | X y
d
-+ 'fm

Fig. 10. ON-OFF CONTROLLER WITH SQUARE DEADSPACE.
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Comparing Figs. 9 and 11, we see that on-off control behaves essen-
tially as linear control does; except that xbi’ ybi are not driven
exactly to zero. This is expected, since the control force magnitude
cannot be decreased, as needed when xbi is very close to zero; and
overshoot occures. This implies a non-zero average in-track mass attrac-

tion force, and will be discussed in the next chapter.

(ORN

xu(mm)

g T
0 200 400 %50

t(sec)

Fig. 11. PLOT OF xp; VS t. [Equations (2.2a,b); (4.5a,b);
and logic of Fig. 10 were simulated.]

D. On-0ff Control with Octagonal Deadspace

For actual application, octagonal deadspace (Fig. 12) will be more
likely used than square deadspace. This is because with an octagonal
deadspace, there is better directional control on the control jets.

The following logic (Fig. 13) was used in the computer simulation,

a=me' - e
X
b = e' - me' m = tan Z
X 8
A (4.17)
c = e'+ me'
y X
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“ e’
-y JET
TXUETS
-y
+x JET »
+x
+y JETS
+y JET
m& TAN 18'—
Fig. 12, OCTAGONAL DEADSPACE.
Switch Position
If
sgn(a) = sgn(d) then 1
sgn(c) # sgn(d) 2
sgn(a) # sgn(b) 3
sgn(b) # sgn(c) 4
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- t r_ -x JET

l
ﬁ/Z(ex'-ey')~>%\
3 >

V2/2(eq+ e ) —°
4

of— — 1
| - +x JET
(a)
' 1 r— —= -y JET
ey |
J2/2(ey-eg) 2 |
ﬁ/Z(e;*' o,,')—-—-jo
4O
—_1 I - +y JET
(b)

Fig. 13. OCTAGONAL DEADSPACE MECHANIZATION.

Comparing Figs. 11 and 14, we see that for the purposes of these
analyses, linear control is also a good approximation of octagonal dead-
space control. The "steady-state" Xg oscillation amplitude is 2/3
that for the square deadspace, and this is expected since there is better

directional control on the jets.

E. Conclusions

The stability of the control system with integral control has been

analyzed. From root locus analysis of the linear integral controlled
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0.l r

xm(mm)

O 1 I ] T ] P

0 200 400 o 600
t (sec)

Using the same parameters as those used in the square
deadspace simulation,

0.05 mm/sec2

f =3
m
= 0.1
rd mm
2
AV = 0.001 mm/sec

Fig. 14. PLOT OF x,j; VS t. Computer simulation of
system with octagonal deadspace controller. [Egs.
(2.2a,b) and logic of Fig. 13 were simulated.]

system without deadspace, coupled with knowledge of the basic non-integ-
ral controlled system, we can pick a range of acceptable Kc's for an
on-off deadspace controller. For typical system parameters, the effect

of varying Kc are,
(a) Very high K, Ko 2 5) - unstable.

(b) High K, (4 > K, > 10’2) ~ poor performance because
original control poles are disturbed.
4

K >8X10 )
C~

(c) Optimal K, (10_2

1A

4

(d) Low K (8 X 107" >K ) - inadequate damping.

C

The effectiveness of this control law is discussed in the next

chapter.
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Chapter V

TRAJECTORY ERRORS WITH INTEGRAL CONTROL

The integral, on-off, deadspace controller reduces but does not
eliminate average mass attraction force caused by a constant atmospheric
drag. Mass attraction force can also be a result of the proof mass being
in a limit cycle at certain specific frequencies, or of an inaccurately
mechanized spin rate. These three error sources are described, and or-

ders of magnitude for the errors calculated.

A, In-Track Trajectory Error Equations

Equation (3.2b) combined with Eq. (3.1la,b) can be rewritten as,

feh = cfexo - sfey0 + bei + AC(cszi + szybi)

%) Gk 2

+ Cr(czybi ~ Sszi) + (terms with axn iV bi

where n>1, i + j>2, k+ £>1) (5.1)

where
. a1 (afex . 3 ey)
T2\ ox dy
ACé}_(afex_afe)
=2 \'ox y
. él(afex afex>
r =33y * Tox
s, % sin (tht) c, é cos (2uht)

Lange [2] showed that in-track forces feh(t) cause in-track

trajectory errors h(t) according to the Euler-Hill equation,
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4 2 d°r

d'h 2 g 2

Sg+ —-% = gh - 3ul g (5.2)
dt dt dt €

where
A . -3
w, = orbital rate =~ 10 ~ rad/sec
For a constant feh the solution to Eq. (5.2) is,

f
eh
2
w
o

h(t) = {4[1 - cos(w t)] - 3 wztz} (5.3)
o) 2 o

where h(0) = 0 h(0) = O.

B. Integral Controller Error

As was shown in Chapter IV-C & D, the integral controller with

deadspace does not drive xbi’ ybi to a "steady-state" value of zero.
From Eq. (5.1), this implies a possible non-zero %;h (Fig. 15).

From Fig. 16, an f; can be approximated by taking a time-weighted

h
average slope of feh’ beginning from t = 750 sec.

~ 1 ~-14
==X 10
feh g

[

From Eq. (5.3),
- -10 2
h(t) = 2 X 10 4[1 - cos (.001t)] - 0.75 X 10 t

For long term effect, the first term can be neglected. The in-track

trajectory error after one year is,

h =72 m
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A :
— e ———— e
mo o2
‘o
»
°
e
e O.l
[-]
0 I | 1 ] ] | o
0] 500 1000 1500

t(sec)

Fig. 15. PLOT OF Ot feh dt VS t. Computer simulation of sys-
tem with on-off octagonal control, and simulation of fgp and
fon- [Eqs. (2.2a,b), (5.1) and logic of Fig. 13 were simulated.]
The following parameters were used,

ws = 0.1 rad/sec
7y = 20 sec
dV = 0.001 mm/sec
2
f = 0.01 mm/sec
m
= 0.1
Ty mm
Kc = 0,004 1/sec
-3
f, =10 mm/sec2

This is four orders of magnitude smaller than the in-track trajec-
tory error without integral control, which was calculated by Powell [l

to be,

h = 150 km
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Y

X
T

0.21

t -
St dt (x10°8q)

1 | ]

500 750 1000
t(sec)

Fig. 16. ENLARGEMENT OF PORTION OF Fig.

C. Error Due to Limit Cycling of the Proof Mass

From Eq. (5.1), we see that if x__(t), ybi(t) were sinusoidal

bi

with certain frequencies (e.g., frequency = 2wh),

will be non-

zero. Typical limit cycles with little or no external disturbance force

is shown on the following page in Fig. 17.

*p

s

a cos (jw. t
bi J Q 1lc )

j=0

«
I
s

sin (jw_  t
a, &) lc)

bl T I
where
2r1C j
T J
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i(t) and ybi(t) can be expanded in Fourier series,

(5.4a)

(5.4b)

(5.4¢)




Ypi

A T |
|

A NN T

ANVANVA

/N VOV L

\VARVARVARN

where .- o
Wie
Tye = 219
Fig. 17. TYPICAL LIMIT CYCLES. Plots of Xbi and ybi vs
Substituting Eqs. (5.4a,b) into Eq. (5.1),
o0
= f - 25 a, ¢ jw_ t
feh <c ox sfey>+c . ; os (J 1c)
o] [e) J:O

+ AClc

[04] [o0]
jw. t Z sin (jw_ t
2 z aj cos (J 1lc )+ S2 i3 aj @ 1c )

[>o]

PN o
e . a‘j sin (j lct) s, ‘ aj cos (J le )
L j=1 j=1
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(5.5)



Since the only significant in-track error is caused by a non-zero

feh’ we note that feh is significant only when xbi’ ybi are oscil-

lating at certain frequencies.

1

= if jw = 2w
en - &C2y 1% h
2

~ 1 0 fex 3

= = — if jw, == w
Ten = 32 NE 25 I¥1¢ 2 ™n
~ 3 azfex 1

= e— —— if o = — W .
fen = 32 NE e R bt P B (5.6)

The largest of these errors occur when lec = 2wh- It is of interest

to see what the error is when

jw = 2W 5.7
J lec h + € ( )
assuming ¢ << wh-
Equation (5.5) becomes,
f .  =a_ [AC cos (et) + C_ sin (et)l
eh J r
+ sinusoidal terms with frequencies >> W, (5.8)

The terms with frequencies much higher than wo do not contribute signi-
ficant in-track trajectory errors. Therefore, Eq. (5.8) can be rewritten

as,

feh = Kj[cos (et) + sin (et)] (5.9)
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where

-10
Cr =10 g/mm

*AC

np>

10"10 a,
J

Substituting this in Eq. (56.2),

4 2
2 2
ah + W dah -K. G? + 3w ) [cos (et) + sin (eat)]
4 o 2 J o
dt dt

(5.10)

Solving this with initial conditions h(0) = 0, h'(0) = O, h' (0) = O,

h'™(0) = 0, we get,

sin (wot) - cos (et) - sin (et)

For < wo (this assumption will be shown to be valid),

3K
h(t) ® - —L {1 + e - cos (ct) - sin (et)}

Expanding cos (et) and sin (¢t) 1in Taylor series,

3 24 35
3 2 t t
h(t) = - 3 Kt -BKJ,[itz - S - 5 +]

*Since € can be either positive or negative, the sign of Cr
ANC in Eq. (5.9) does not matter.
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(5.12)

(5.13)

and




1f

3 2
- -2t )
€=0, h(t)=-3 K (5.14)
Rewriting Eq. (5.13),
h(t) 1 1 22 1 33 1 4.4
—-5——2_1+3et 12et 6061: +§—é—det
- S K.t
2
1 55 1 6,6 1 77 ot
* 3520 €t " 30,160 € 181,440 €t * h.o-t.

(5.15)

Plotting Eq. (5.15) for |et| < 3, the higher order terms can be neglec-
ted. From Fig. (18), we see that,

=1.27 at et ~ 1.6 rad (5.16)
3 2
- - K.t
J max
h km A hi(t)
(t=107sec) | -3 Kjxt?
30+ 2
max h
2.251
|
| | | -
| 2 3 et
1 | 1 = -
1077 2x10°T  3xI077 erad/sec
(t=10"sec)

Fig. 18. PLOT OF [h(t)/(-3/2 Kjtzﬂ VS et; AND h VS =
FOR t = 107 (~ 4 MONTHS) (ASSUMING THAT 3w1c = 2wh + &),
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. . 7
This implies that after 4 months (10 sec), with

In| =19 km if w, = 2
max 1lc
K, =1
and
In| = 1.9 km if 3w, =
© 'max lc
K, =

The limit cycle frequency is determined by

[1], for a given satellite,

-3 -4
Typically, 5 X 10 >/AV >5 %X 10 mm/sec, corr

2
mm/sec and 0.1 - .t > 0.01 msec. These values

0.005 rad/sec, and

-7
£=1.6 x 10 rad/sec,

the following equation

esponding to fm = 0.05

. 0. ,
of AV give 05 > wlc

lc’ > 0.15 rad/sec if w = 2W 4 ¢
~ 1lc k

le| > 0.05 rad/sec if 3w, = 2w + ¢
~ lc h

le| > 0.05 rad/sec if 5w, = 2w + ¢
~ lc h

Higher order terms can be neglected since h is

2
which is inversely proportional to j . Therefo
to be greater than 10-2

-7
order of 10 rad/sec is purely academic.

It remains now to analyze the behavior of h as ¢

Equations (5.12) can be approximated by,

3K
n(t) = - —?4 t if <t
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rad/sec; and the behavior of h at =

proportional to aj,

re, £ can be expected
of the
increases.
> 1 (5.17)

>




For a given t, h decreases as ¢ increases. With t = 4 months (107

-5
sec), and ]ef = 10 ~ rad/sec,

|h|=3><104mm=30m=2%of ln_ | if 3w =20 + e

max lc

(Note that the assumption that ¢ << wo has now been shown to be valid.)
The fact that hmax does not occur precisely at resonance was not
expected. Looking back at Eq. (5.5), we see that at resonance, the non-

zero contributions to E;h are from terms of c s2 (c_ - cos[(zwh4-€)t],

2' T2 2
s, ° sin[(zwh + €t] if not in perfect resonance) (Fig. 19a,b).
|
cosZ(2wpt)
\
-
X
~
S Lo N N[N __ [\ __[___
—

Fig. 19a. PLOT OF £ ,(t) AT RESONANCE. Dotted line show average
of cosz(zwht).

Co*cos [(2w+¢)t]

-y

Fig. 19b. PLOT OF feh(t) CLOSE TO RESONANCE. Dotted line show average
of cos (2wht) * cos [(th-+€)t], and is a sine curve with frequency
€.

At resonance, %;h is a constant; while close to resonance, it is

a sine wave with frequency ¢. Therefore, with certain ¢'s, in-track
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trajectory errors will actually be bigger than if the limit cycle were

in perfect resonance.

In computer simulations, it was found that limit cycles with wlc
greater than wh can not be simulated. This can be explained by the
fact tha. with wlc > wh, correct (on-off) jet alignment to perpetuate
a limit cycle is impossible. (See. Fig. 20.) Therefore, the largest
error would be caused by limit cycles with frequency Swlc = 2w + =,

It was also found that even though limit cycles at frequency 3v1c =
2w can be simulated, limit cycles at frequency 3wlc = 2w+ ¢ cannot be
sustained. Again this can be explained by the fact that the on-off jets
can not continuously produce pulses in the correct direction (Fig. 20).

The conclusion is that the worst error that will occur will be from
limit cycles of frequency wlc =2/3 wh, which gives an in-track trajec-
tory error of 1.5 km if allowed to limit cycle for 4 months. The errors
from limit cycles close to resonance frequency will not be significant

since on-off control will not sustain such limit cycles.

D. Spin Rate Error

The integral controller is mechanized by introducing a control cen-
ter bias Xu' yu as shown in Chapter IV-1. This involves mechanizing
a spin rate of wh. If this mechanized spin rate, wh, is not equal to
Wy s the controller senses a local horizontal which is rotating with
respect to the actual local horizontal. This results in the controller
sensing any constant horizontal displacement (such as that caused by
constant atmospheric drag), as a rotating disturbance.

Equations (4.1) and (4.2) can be rewritten as,

= -K (5.183.)
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hc t b
= f dt (5.18b)
0

(0]
ol
<

where

= Wt
cos ( b )

nl
i

in (W t
sin ( h )

Using the average values of fe from Fig. 21, we find the in-track

h
errors after one year are,

h= 72m if wh—mh =0

h = 908 m if jw, v | = 0.001
h = 4.05 km  if |mh-mh] = 0.003
h = 5.4 km if ]wh—mh[ = 0.004
h = 9.45 km  if lwh-EhI = 0.006

E. Conclusions

An analysis has been made on three sources of trajectory errors,
with the mechanization of integral control. The integral controller
will reduce in-track trajectory errors caused by mass attraction force
from 150 km to 72 m, after 1 year.

Limit cycles will cause maximum trajectory error if the frequency
is approximately 10_7 rad/sec away from resonance frequency. This
hmax(2=1.9 km) is from the highest resonance frequency possible with on-

off control (3w = 2wh). Higher resonance frequencies are not obtain-

lc
able, because of the lack of directional control on the control jets.
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This was mechanized in the computer with the following
input values

dv = 0.001 mm/sec
2

f = 0.01 mm/sec

m

= 0.1

ry mm

y = 20 sec

Kc = 0.004 1/sec

w = 0.1 rad/sec

w = 0.001 rad/sec

?
I

0.095, 0.099, 0.100, 0.102, 0.105 rad/sec
10-3 mm/sec2

Fig. 21. Jﬁt feh dt VS t FOR VARIOUS VALUES OF W o= W .
0
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-5
with an |e| of 10 ° rad/sec,
For typical control impulse sizes
-2
|e| is greater than 10 ~ rad/sec.

is negligible.

Ih| is already down to 2% of |h___|.

max

(5 % 1073 > AV > 5 X 10_4 mm/sec),

Therefore,
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Chapter VI

TRAPPING SUSCEPTIBILITY
The "trapping' phenomenon is described. Trapping susceptibility of

circular versus square deadspace, and trapping susceptibility versus

2
W 1 .
Kp/ o are ana y zed

A. Description of Trapping

Trapping, a phenomenon first described by Powell [1], occurs when
the proof mass is in a stable equilibrium position outside the deadspace.
This results in the constant expenditure of fuel while little or no ex-
ternal force is present.

This phenomenon was encountered during the study of limit cycle er-
rors, when it was necessary to simulate limit cycles of certain resonant
frequencies. It was found that limit cycles with wlc = ws were partic-

ularly easy to simulate. This implied that the proof mass was prone to

be "trapped' in a fixed position in the satellite frame of reference.

B. Trapping Susceptibility

Equilibrium positions of the proof mass can be found by solving the

following equations [11],

2

w X - YWy
=L (x -x)=x_ - YWy, - b sb (6.1a)
K b e b s°b

p J%l + 2w2>(x2 + y2>

7 s b b

w2 Yy, + yw X

s b s b
— - = - 6.1b
K Uy 7 Vg) =¥ *orugX ( )

D e b \Kl+ 2wz>(xz+ 2)
7 Yg b yb

which are the steady state solutions to Eq. (2.4). These can be trans-

formed into polar coordinates,
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where

cos 6

(e]
I

s é sin 6
x2 + 2
p - Nt Yy

Equations (6.1a,b) become,

n>

r
A _d .
£(6) = 3 Bn + qxe(ns - s - dc) - qye(qc - c+ 3s) =0 (6.2)

where

A
yW

(o4
i

s

A2
= W
| s/Kp

’1 + 72w§

e

An existing program [1] which solved Eq. (6.2) and checked the stability
of the solutions was used and the results shown in Fig. 22. Since
r*(circular) > r*(square), the circular deadspace is less susceptible
to trapping than the square deadspace.

In the initial analog simulations for this study, a Kp/wz <1 was
used because of overloading problems on the computer. It was found that
the system was less prone to being trapped than when a Kp/wz > 1 was
used. An analysis of r* versus Kp/wz was made and the result is
shown in Fig. 23. Powell [1] had shown, for Kp/wz = 15, that optimal
r* occurred at Yoy = 1 and yug = 2.4 for the circular and square

deadspaces, respectively. In simulations, this has been shown to be true

in general.
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Fig. 22. CONTROL EFFORT VS CENTER OF MASS
FOR Kp/wg = 10.

Figure 24 shows the amount of fuel wasted versus Kp/wz.

C. Conclusions

2 .
For Kp/wS > 1, which will be required in a real system [see Eq.
(4.16)], circular deadspace is less susceptible to trapping than square

* rises significantly as Kp/wi is de-

deadspace. For Kp/wz <1, r
creased. However, for Kp/wi > 1, no significant gain in trapping sus-

2
ceptibility will be made by changing Kp/ws.
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Fig. 23. TRAPPING SUSCEPTIBILITY VS Kp/(*)s.
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Chapter VII

CONCLUSIONS

The aim set forth in the Introduction is to study the effectiveness

of integral control in reducing trajectory errors caused by mass attrac-

tion.

The findings and recommendations of this thesis are:

Disturbing forces on the satellite which are fixed
in the satellite frame of reference do not cause
long term in-track trajectory errors. (Chapter III)

The only external disturbing force on the satellite
which will produce long term in-track trajectory
error is the constant atmospheric drag. For typical
satellites, specific drag force (., ) will be 1072 >
fip > 1072 mm/sec? (Chapter III).

Root locus and computer simulations of the integral
controller showed that the system is unstable at high
integral controller gain K.. It also showed that
there is always a range of stable K.. (Chapter IV)

Analysis of integral on-off controls with deadspace
have shown that they canbe analyzed with the root locus

plots of a linear integral control. (Chapter IV)

Taking all factors into consideration (stability,
trapping susceptibility, etc.), for a satellite with
deadspace size rgq = 0.1 mm, the following control
parameter ranges are recommended: K /wg >1, 3 >
ywg > 1, and 1072 > K, > 8 x 10"% 1/sec. (Chap-
ter 1V)

In-track trajectory error (after 1 year) due to mass
attraction was reduced from 150 km to 72 m with the
use of integral control. This assumed an on-off con-
troller with maximum force level of 0.01 mm/sec? and
step sizes of 0.1 sec. (Chapter V)

The maximum trajectory error due to limit cycle resonance,
that can be expected in practice, is 1.5 km in the very
unlikely event that it is allowed to 1limit cycle at fre-
quency = 2/3 Wy for 4 months (Chapter V).

In a typical drag-free satellite, 5 X 1075 > AV > 5 X

1074 mm/sec. The minimum | ¢/ for significant limit
cycle frequencies is approximately 10-2 rad/sec. How-
ever, for |¢| > 1073 rad/sec |h| 1is already less than

2 percent of |h max. and it is inversely proportional
to € (for ]el > 10~% rad/sec). Therefore, trajectory
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errors due to limit cycles will be negligible.
(lec = 2wh + ¢) (Chapter V).

Typically, in-track trajectory error of less than 0.9 km
after 1 year will result from a spin rate mechanization
error of less than 0.001 rad/sec. (Chapter V)

For the recommended range of K /wz > 1, no significant
gain in trapping susceptibility is possible through a
change in K . However, circular deadspace is signifi-
cantly less gusceptible than square deadspace, in the
range Kp/ws > 1. (Chapter (VI)

For K /wﬁ < 1, trapping susceptibility decreases very
rapidly with the decrease of Kp/wg. (Chapter VI).
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: y K, £, £, , f
Input data KC Y, r ix fly’

Appendix A

COMPUTER PROGRAM SIMULATING SATELLITE SYSTEM WITH ON-OFF,
INTEGRAL CONTROL WITH OCTAGONAL DEADSPACE

Program simulates the satellite translational equations of
motion [Egs. (2.2a,b)], on-off integral control with octagonal

deadspace. Program is in WATFIV language.

£, ) , £, 4dv,
*e? Yo !

p’ _ a’ bx’' by m
ms'wo’ wh, mass attraction gradients and initial
conditions. ¢

Output Data: . f , f , f , h.
Qutput Data: X, Vi» Xpi0 Y30 Tox Toyr fen A fon dF

List of Symbols:

of «
A = —F

Af
A2) = ex

dy

azzt‘eX
A(3) =

sz

o2s .
A4) = 2e

dy

32s
A(5) = —d;fyi

63fex
A(6) =

éxS

a3fex
A(7) =

6y3
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A(8)

A(9)

B (m)

BX,BY

DV

EX, EY

FEH

FX0,FYO

IFEH

RD

XBI,YBI

XE, YE

XU, YU

53f
ex

szay
3

0 fox

0xdy
ats

—ey_
BXJByk

(in same order as

bx by
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X(1) =t

X(2) = Xb
— !
X(@3) = X,
— '
X)) =y
=1
X(6) he
X(7) =1
ve
T=1t
W=uw
S
WO = w
(o]
= W
WH h
WHM = wh

5. Listing of Programs:

C Main Program:

COMMON/NAME/We WSy XESYESF I yBXyBY yEXsEY 3 WT4DV,FM
COMMUN/NOME/RyCy XUy YUGRD9CSySNy XBI 3 YBI 9 FX9oFYyWHy WHT y WHM ) WHMT
COMMON/NIME/Y(4),A(9) ,8(9),FEH, FEHI yFXDO,FYD
COMMON/NEME/Z(T)yDFEH2,W0,WOS

DIMENSION X(15)

EQUIVALENCE (X(1),T)
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C Constant parameters of the system are assigned values:

DV=0.001
FM=1.E°2
RO=0.1
R=20.,

W=0,.1
WAS=Wr¥k2
Wi=,001
WOS=WO*%2
WH=.099
WHM=,099
FIzleE~4
BX=0,.0
BY=0.0
XE=0,0
YE=0.0
FX0=0.
FY0=0.
A{l)=1.E-10
A(2)=1.€E-10
A(3)=1.E-11
Al4)=1.E-11
A{S5)=1e.E-11
A(6)=1.E-12
A(7T)=1.E-12
A(B8l=1.E-12
A{9)=1.E-12
DO 2 [=1,9
B(I)=A(T1)

c Values of K, to be read in, and variables are initialized:

READ,C
IF{CeGTL10) GO TO 99
DFEH2=0.,
WT=0.
EX=0.
EY=O.
X8I1=0.
Y81=0.
CS=0.
SN=0e
XU=0.0
YU=0.0

DO 4 I=1’4
I{1)=0.

DO 3 I=1,44
Y(1)=0.
FEH = 0.
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FEHI=0,
DO 1 I=1,15
1 X(I1=0

C Output Commands:

WRITE (6415)
15 FORMAT (1H1SOX4HDATA///+4X1HTySX3HXBT 4 X3HYBI 9 3X2HF Xy 3X?2HFY  4X2HXR
L5X2HYB 3 6 X3HFEH,y 8X4HIFEH, 8X2HEH)
DO 30 1=1,41500
WRITE (6420) X(1) o XBIsYBIoFXgFY s X{2) X (4),FEH,FEHI,ZX(15)
20 FORMAT (1XsFb6e142F7.3492F5.245E11.3)
30 CALL RUK(X,DT415)
WRITE (64920) X({1)yXBI o YBI 4FXyFYeX{2)yX{(4)FEH,FEHT,,X{15)
GO T0 10
99 RETURN
END

C Subroutine does numerical integration of differential equations
given in subroutine DERIV:

SUBROUTINE RUK{XyDT,4N)
RUNGE-KUTTA 4 TH ORDER
COMMOUN/NOME/RyC o XUy YURDyCSySN g XBI g YBI yFXyFYy WH yWHT y WHMy WHMT
DIMENSTON X(15),U(30),F(30),D(30)
CALL PULSE(X,DT)
CALL DERIV(X,D,0T)
DO 101 I=1,N
101 U(I)=X(I)+0.5 *D(1)
CALL DERIV{(U,F,DT)
DO 102 I=1,N
D(II=D(I)+42.,0 *F(I)
102 U(I)=X{1)+0.5 * F{1)
CALL DERIV{U,F,DT)
D0 103 I=1,N
D(II=D(I)+2.0*%F (1)
103 U(II=X(I)+F(I)
CALL DERIVIU,F,DT)
DO 104 I=1,N
104 X(I)=X{I)+(D(I)+F(1)) /6.0
RETURN
END

C Soubroutine simulates an on-off octagonal controller-
mechanication of Fig. 13:
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SUBROUTINE PULSE(X,DT)
COMMON/NAME/ Wy WS s XE 9 YESFT yBXoeBY yEXyEYyWT DV, FM
COMMUON/NCME/RyCoXUsYU9RDyCS oSNy XBI g YBI gy FXyFYy Wil g WHT g WHM, WHMT

61

62

63

64

71

72

COMMUN/NYME/D(4),S(3)E,CN
DIMENSION X(15)

AT=wW¥X (1)

WHT=WH*X(1)

WHMT=nWHM%xX (1)

DT=1.

FX=0.0

FY=0.0
XU==CX{X{6)*COS{WHMT) +X( TI&SIN(WHMT})
YU==CX(=X(6)*SIN(WHMT ) +#X(7)*CCS{WHMT})
EX=X{2)=XU+R*{X(3)~WxX(4))
EY=X{4)=YU+RE(X(5)+WxX(2))
E=0.414

D1Y=EX*EY-EX

D(2)=EY-E*EX

D{3)=EY+E*EX

D(4)=E*EY+EX
S{1)=0.7%(EX~-EY)
S(21=0.T*(EX+EY)
S(31=0.7T#(EY-EX)

CALL SIGN(D(2),0(3},CN)

[F (CNeLTe0s) GO TO 61
CALL SIGN(DI{1),D(2),CN)

IF (CN.LT.C.} GO TO 62
CALL SIGN(D(3),D(4),CN)

IF (CN.LT.Cs) GO TO 63
CALL SIGNID(1},D(4),CN)

IF (CN.GT.0.) GO TO 64

60 TO 70

IF (EX+GT.RD) GO 7O 71

IF (EX.LT.=-RD) GO TQ 72

GO TG 70

IF (S(2).GT.RD) GO TO 73
IF (S(2).LT.~-RD) GO TO 74
GD TO 70

IF (S(1).GT.RD) GO TO 75
IF (S{1).LT.-RD) GO TO 76
IF (S{3).GT.RD) GO TO 77
If (S(3).LT.-RD) GO TO 78
GO TO 70

[F (EY.GT.RD) GO TO 77

GO TO 70

FX==FM

GO TU 890

FX=FM

GO TO 8¢
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73
T7

74
78

75

16

80
70

FX==FM
FY=-FM
GO TO 80
EX=FM
FY=FM

GO TU 80
FX==FM
G3 TO 65
FX=FM

GO TO 65
DT=DV/FM
RETUKN
END

C Subroutine checks the sign of AN and BN; if the signs are

C equal, then CN = +1.

SUBROUTINE SIGN(AN,BN,CN}

IF N=+1y SIGN(AN)=SIGN(BN)
[F N==1, SIGN(AN)E#SIGN(BN)

51

52
53

CN==1.

IF (AN.GT.C.} GO TO 51
IF (8N.LT.0.) GO TO 52
GO TO 53

IF (BN.GT.C.) GO TO 52
GO TO 53

CN=1.

RETURN

END

, if the signs are opposite, then CN = -1.

C Subroutine gives differential forms of:
C a. equations of motion,

C b. integral controller,

C ¢. in-track mass attraction force, and
C d. in-track trajectory error.
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SUBROUTINE DERIV(X,DX,DT)
COMMUN/NAME/ Ay WS XEWYESFI 4 BXyBYsEXyEY T4 DVyFM

COMMON/NCME/RyC o XUp YU 3RDyCS oSNy XBT g YBI 3 FXgFYywH g WHT o WHiMyWHMT
COMMON/NIME/ZY (4) s A{9) 4B(S), FEHyFEHT yFXU4F YO
COMMUN/NEME/Z(T)+DFEH?2 90y WOS

DIMENSICN X(15), DX{(15)

WT=WxX(1)

WHT=WH*X (1)

WHMT =wHM*X (1)

DX{1)=DT

DX{2)=X(3) * DT
Z(3)=WSHR{X{2)=XE}42*WkX(5)+FI*COS(WT) +FX+8X
DX(3)=2(3)*DT

DX{4)=X(5)*DT
Z{4)I=WS*X{X{4)=YE)=2%WEX{3)=-FI*SIN(WT)+FY+BY
DX{5)=2(4)}*DT

DXU6)=(X{2})%COS{WHMT) =X{4)*xSIN(WHMT )} )*DT
DXCT)=(X(2)%SIN{WHMT ) +X (4} *COS(WHMT ) )*DT

XB=X{2)y YB=X{4) FIND X8I, YBI

CS=COS(WHT)
SN=SEIN(WHT)
XB1 CS * X(2) - SN * X(4)
YBI SN * X(2) + CS * X({4)

FIND INTEGRAL EFFECT OF MASS ATTRACTION

Y{1) = CS®*FXO-SN%FYOQ

DX(8) = Y(1)*DT

Y(2) = (CS*¥A(L1)=SNAB(1))%xX{2)+(CS*A(2)-SN*B(2))*X(4)

OX(3) = Y(2) = DT

Y(3) = 0.5%((CS*A(3)=SN*B(3) ) =X (2)%*2+(CS*A(4)-SN*E (4] )*xX(4)*x2+(
LICS*A(S5)1=-SN*B(5) )1 %X (2))%X(4))

ODX(10) = Y(3) * DT

Y{4) = 0.166%((CS*A(6)-SN*B[6) ) xX(2) %23+ (CSHA(T)=SN*Z(7))*X (&) *x]3
L+((CS*A(B)-SN*B(8) ) %X (2) *%2 )% X(4)+( (CS*A{I)=SN*B(9) )=X{2) }*X(4)*x*x2
2)

DX{11l) = Y{4) * DT

FEH = Y(1) + Y(2) + Y(3) + Y(4)

FEHT = X{8) + X(9) + X(10) + X(11)
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$DATA

FIND IN-TRACK TRAJECTCRY ERROR DUE TO MASS ATTRACTION

L1 )==~CS*FXO+SN*FY(
L(2)=(=CS*A(L)+SN.B(1) I *X(2)+(-SN*A(1)-CS*BIL))*(2%xX{(3))+(CS*A(1)~-
ISN®B( L)) %Z{3)+(-CS*A(2)+SN*B(2) )X (4)+{-SN*XA(2)-CSkB(2) )% (2%X(S) )+
2(CS*A{2)-SN*B(2))*72(4)

ZES5)=(~CS*A(3 ) +SN%B(3) )X (2)*%2+(=SN*A(3)=CS*B(3) ) *4¥xX(2)%X(3)
L+(CS*A(3)-SN*B(3) )1 *2%(X{2)*1(3) +X(3)%%2)

Z(6)=(-CS*A(4)+SN*B(4)) *X(4)*%x24(-SMNRA(4)-CS%B(4) ) *4%xX(4)%X(5)
1+(CS*A(4)-SNXB{4) ) R2%{X(4)*2(4)+X(5)%%2)
Z{T)={-CS*A(S5)-SN*B(5) )*X(2) %X (4 )+ -SN®A(5)-CS*B(S5) )*(X(2)*X(5)+
IX(3)%X{4) )24 (CS*A(5)=SN*¥B(S5) ) ¥ (X{(2)*Z(4)+X(3)1%xX{(5)*2+7(3)*X(4))
DFEH2=Z(1)4Z2(2)+0.5*%(Z(5)+2(6)+2{(7))

DX{12)=(-WOS%EX(13) +DFEH2=-3*{WOS*FEH) ) *DT

DX(13)=X{12})*DT

DX{14)=X{13)1*DT

DX{15)=X(14)%DT

RETURN

END

0.004

20
$STOP
/*

«0
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Appendix B

COMPUTER PROGRAM SIMULATING SATELLITE SYSTEM WITH ON-OFF,
INTEGRAL CONTROL WITH SQUARE DEADSPACE

Delete subroutines PULSE and SIGN from program given in Appendix A.

Add new subroutine PULSE.

Subroutine simulates an on-off square deadspace controller.

SUBRCUTINE PULSE{X,0T)
COMMON/NAME/ 43 WSy XEyYEZFI ¢BXyBY s EXyEY o WT 3DV, FM
CCMMCON/NGME/ Ry Co XU 9 YUSRD9yCS oSN XBLoeYBLI9F X9 FY gWH o WHT g WHMy WHMT
DIMENSIUN X(15)

WT=W*X (1)

WHT=WH%:X{1)

HHMT=WHM%X (1)

NT=1.

FXx=0.0

FY=0.0

XU==Cx (X (6)*COSTWHMT ) +X(TI*SIN(WHMT))
YUs<CX{-X(6)RSIN(WHMT )} +X (T )*COS(WHMT))
EX=X(2)=XU+R*{( X(3)-WxX(4))
EY=X{4)=-YU+R*{X(5) +W*X(2))

IF (FX.GT.RD) GO TO 50

IF (EX.LT.-RDY GN TO 51

IF (EY.GTRD) GG TG 52

IF (FY.LT.-RD) GO TO 53

GO TO 70

FX==FM

DY=DV/FM

GO T4 60

FX=FM

DT=DV/FM

GG TU 60

FY==-FM

DT=DV/FM

Gu TG 7C

FY=FM

DT=NDV/FM

) RETURN

END
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Appendix C

SCHEMATIC FOR ANALOG COMPUTER SIMULATION OF SATELLITE
SYSTEM WITH SQUARE DEADSPACE, INTEGRAL, CONTROL

Simulation was done on EAI analog computer TR-48.

Schematic shows simulation of satellite translational equations
of motion [Eq. (2.2a,b)], integral control with square deadspace.

Time scaled such that simulation time = 1/10 real time.
Wy = 0.1 rad/sec.
Definition of symbols on next page.

Figures 25 and 26 show the schematics for analog computer simula-
tion of the satellite system with linear square deadspace; integral
control.
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